
Probabilistic Graphical Models: Principles and

Techniques

Notes by Jin Park

November - December 2017

Abstract

This report contains notes to Probabilistic Graphical Models: Principles and
Techniques by Daphne Koller and Nir Friedman. It only covers one portion
of the book, addressing the problem of representation. Some topics covered
are directed and undirected networks, temporal networks, Gaussian networks,
and exponential families. These notes are not complete in topics or depth, so
interested readers should further purchase the book for a more rigorous repre-
sentation of the material. These notes are NOT endorsed by the authors.

Contents

1 Foundations 3
1.1 Probability Theory . 3

1.1.1 Basic Concepts . 3
1.1.2 Querying a Distribution 4
1.1.3 Continuous Spaces . 5

1.2 Information Theory . 5
1.2.1 Compression and Entropy 5
1.2.2 Conditional Entropy . 6
1.2.3 Relative Entropy and Distance between Distributions . . 7

2 Bayesian Networks 8
2.1 Exploiting Independence Properties 8
2.2 Bayesian Networks . 9

2.2.1 From Graphs to Distributions 9
2.3 More Independencies . 10

2.3.1 D-separation . 10
2.3.2 I-Equivalence . 11

2.4 From Distribution to Graph . 11

3 Undirected Graphical Models 16
3.1 Parameterization . 17
3.2 Markov Network Independencies 17
3.3 Parameterization Revisited . 18

3.3.1 Log-linear models . 18
3.3.2 Eliminating Ambiguity . 19

3.4 From Bayesian networks to Markov networks 20
3.5 Partially Directed Models . 20

4 Local Probabilistic Models 22
4.1 Tabular CPDs . 22
4.2 Deterministic CPDs . 22
4.3 Context-specific CPDs . 24

4.3.1 Tree-CPDs . 24
4.3.2 Rule-based CPD . 25
4.3.3 Other representations . 25
4.3.4 Independencies . 26

4.4 Independence of Causal Influence 27
4.4.1 The Noisy-Or Model . 27
4.4.2 Generalized Linear Models 28
4.4.3 General Formulation . 29

4.5 Continuous Variables . 29
4.5.1 Hybrid Models . 30

4.6 Conditional Bayesian network . 31

1

5 Template-Based Representations 32
5.1 Temporal Models . 32

5.1.1 Dynamic BN . 32
5.1.2 State-observation Models 33

5.2 Template Variables and Template Factors 35
5.3 Directed Probabilistic Models for Object Relational Domains . . 36

5.3.1 Plate Models . 36
5.3.2 Probabilistic Relational Models 38

5.4 Undirected Representation . 39
5.5 Structural Uncertainty . 40

5.5.1 Relational Uncertainty . 40
5.5.2 Object Uncertainty . 41

5.6 Conclusion . 41

6 Gaussian Network Models 42
6.1 Multivariate Gaussians . 42
6.2 Gaussian Bayesian Network . 43
6.3 Gaussian Markov Field . 43
6.4 Conclusion . 44

7 Exponential Family 45
7.1 Exponential Families . 45

7.1.1 Linear Exponential Families 46
7.2 Factored Exponential Families . 47
7.3 Entropy and Relative Entropy . 47

2

1 Foundations

1.1 Probability Theory

When we refer to the confidence of an event occuring, then we can use proba-
bility to quantify how sure we are that the event will occur. Formally, we define
an outcome space Ω as the space of all possible outcomes and events as the
subset of Ω. A probability distribution is a mapping from events to real values,
and has the following three properties:

• P (a) ≥ 0 for all a ∈ S

• P (Ω) = 1

• If a, b ∈ S and a ∩ b = ∅, then P (a ∪ b) = P (a) + P (b)

The interpretation of probability above is known as the subjective view of
probability. It views probability as a subjective statement about an individual’s
belief that an event will come about. The second interpretation of probability
is known as the frequentist view. Probability is simply the frequency of events.

1.1.1 Basic Concepts

Here’s a potpourri of basic concepts in probability.

Conditional Probability
Information may change the confidence that we have of some event oc-
curring. How do we account for this change in probability?

P (b|a) =
P (b ∩ a)

a
(1)

Chain Rule and Bayes Rule
From the definition of conditional probability, we immediately get the
chain rule.

P (a1 ∩ a2 ∩ ... ∩ ak) = P (a1)P (a2|a1)...P (ak|ak−1...a1) (2)

We also get Bayes Rule.

P (a|b) =
P (b|a)P (a)

P (b)
(3)

3

Random Variables
We may want to analyze an attribute (age group or symptoms). Random
variables are a formal machinery for discussing attributes and the values
of different outcomes. It is usually denoted by Xage=17 but it is actually
a function X(age = 17)→ R.
We may be given a joint distribution P (X1...Xk). To find the marginal
distribution, we must sum up all the possible assignments of the other
variables.

P (X1) =
∑
i

P (X1, x
(i)
2 , ...x

(i)
k)

Note that random variables are simply sets of events which conforms to
an attribute. This means that all rules that apply to events (condition-
ing, chain rule, bayes rule) apply to random variables as well.

Independence
Some information is not useful. We use independence as a way to describe
the case when P (a|b) = b.

P |= (a ⊥ b) if P (a|b) = P (a) or P (B) = 0 (4)

P |= (a ⊥ b) iff P (a ∩ b) = P (a)P (b) (5)

Conditional Independence
Two events may be independent given certain information. Conditional
independence is defined:

P |= (a ⊥ b|γ) if P (a ∩ b|γ) = P (a|γ)P (b|γ) (6)

Some independence properties include

(X ⊥ Y |Z)⇒ (Y ⊥ X|Z) Symmetry (7)

(X ⊥ Y,W |Z)⇒ (X ⊥ Y |Z) Decomposition (8)

(X ⊥ Y,W |Z)⇒ (X ⊥ Y |Z,W) Weak union (9)

(X ⊥W |Z, Y) ∧ (X ⊥ Y |Z)⇒ (X ⊥ Y,W |Z) Contraction (10)

For positive distributions:

(X ⊥ Y |Z,W) ∧ (X ⊥W |Z, Y)⇒ (X ⊥ Y,W |Z) Intersection (11)

1.1.2 Querying a Distribution

Throughout the book, we will be discussing the distributions of a subset of
random variables given some information. A probability query consists of two
parts:

4

• Evidence: subset E of random variable assignments in the model

• Query variables: subset Y of random variables

We will attempt to compute the posterior probability distribution, P (Y |E = e).
We may also want to find the most probable assignment y∗ given the infor-

mation e. This is known as the maximum a posteriori query (MAP query) or
most probable explanation (MLE)

MAP (W |e) = argmaxwP (w, e)

where W = X− E, all other random variables besides E.
We may not want to find the most probable assignment for all other random

variables W . Using only a subset of the variables Y ⊆ W and Z = W − Y , we
define marginal MAP query as

MAP (Y |e) = argmaxY
∑
Z

P (Y,Z|e)

1.1.3 Continuous Spaces

Some random variables, like blood pressure, is continuous. We use a probability
density function to describe the distribution.

P (a ≤ X ≤ b) =

∫ b

a

p(x)dx∫
V al(X)

p(x)dx = 1

Two important continuous distributions are the uniform and Gaussian dis-
tributions.

p(x) =

{
1
b−a b ≤ x ≤ a
0 else

Uniform (12)

p(x) =
1√
2πσ

exp(− (x− µ)2

2σ2
Gaussian (13)

1.2 Information Theory

Information theory is the theory of effectively coding and transmitting informa-
tion. We must consider how to efficiently encode data to maximize the amount
of data per channel and how to deal with noisy channels.

1.2.1 Compression and Entropy

Say that we want to send a large corpus of English text through a channel. One
possible way to send it is to send it as an ASCII text. Another more efficient
way is to create a dictionary of the words in the corpus and change each word
in the corpus into a word index specified by the dictionary. The final way is
Huffman encoding. The main idea of Huffman encoding is to assign variable-
length codes to input characters of which lengths correspond to the frequency

5

of the corresponding word. The most frequent word gets the smallest character
and the least frequent word gets the longest character. To create a Huffman
tree, you must

1. Create a leaf node for each unique (word, frequency pair). Add these
nodes into a priority queue.

2. Extract two leaf nodes with the lowest frequency.

3. Create an internal node with frequency equal to the sum of the two node
frequencies. Add the first extracted node as the left child and the second
extracted node as the right child.

4. Repeat step 2 and 3 until the priority queue has one node.

Is Huffman encoding the best we can do? Surprisingly, yes. The notion of
entropy gives us the precise lower bound for the expected number of bits required
to encode instances sampled from a large corpus. The entropy of a distribution
over a random variable X is defined

HP (X) = EP [log
1

P (x)
] =

∑
x

P (x)log
1

P (x)

where we treat 0log(1
0) = 0.

Another way to view entropy is as a measure of uncertainty about the value
of X. Consider a game of asking yes/no questions until we pinpoint the value
X. The entropy of X is the average number of questions we need to ask to
get the answer. It might be tempting to draw analogies between entropy and
variance. However, they are very different. Consider a bimodal distribution.
Variance increases as the distance between the peaks increase, but entropy does
not.

1.2.2 Conditional Entropy

Say that we want to encode values X and Y. What is the cost of encoding X if
we already encoded Y? Conditional entropy is defined as

HP (X|Y) = HP (X,Y)−HP (Y)− EP [log
1

P (X|Y)
]

We can also find the joint distribution with the chain rule.

HP (X1...Xk) = E[
1

P (X1...Xk)
]

= HP (X1) +HP (X2|X1) + ...+HP (Xk|X1...Xk)

We know HP (X|Y) ≤ HP (X) but by how much? In other words, how much
information did Y give about X? The mutual information between X and Y is

IP (X;Y) = HP (X)−HP (X|Y) = EP [log
P (X|Y)

P (X)
]

Mutual information satisfies several properties:

• 0 ≤ IP (X;Y) ≤ HP (X)

• IP (X;Y) = IP (Y ;X)

• IP (X;Y) = 0 iff X ⊥ Y

6

1.2.3 Relative Entropy and Distance between Distributions

We may want to compare two distributions. For example, we might want to
approximate a distribution with a simpler one and evaluate the quality of the
approximate distribution. A distance metric satisfies the following properties.

• Positivity: d(P ;Q) ≥ 0 and d(P ;Q) = 0 iff P = Q

• Symmetry: d(P ;Q) = d(Q;P)

• Triangle Inequality: d(P ;R) ≤ d(P ;Q) + d(Q;R)

Although it is not a distance metric, relative entropy is often used to compare
two distributions. Also known as the KL-divergence, we define relative entropy
as

D(P ||Q) = EP [log
P (X1...Xn)

Q(X1...Xn)
]

Relative entropy does not satisfy symmetry and the triangle inequality, so it is
not a distance metric. Relative entropy does, however, include conditioning

D(P (X|Y)||Q(X|Y)) = EP [log
P (X|Y)

Q(X|Y)

and so satisfies the chain rule

D(P ||Q) =D(P (X1)||Q(X1))+

D(P (X2|X1)||Q(X2|X1)) + ...

D(P (Xn|X1...Xn−1)||Q(Xn|X1...Xn−1))

The relative entropy of marginal distributions is upper-bounded by the relative
entropy of joint distributions.

D(P (X)||Q(X)) ≤ D(P (X,Y)||Q(X,Y))

If (X ⊥ Y) then

D(P (X,Y)||Q(X,Y)) = D(P (X)|Q(X)) +D(P (Y)|Q(Y))

Other distance metrics include

• L1 distance: ||P −Q||1 =
∑
x |P (x)−Q(x)|

• L2 distance: ||P −Q||2 = (
∑

2(P (x)−Q(x))2

• L∞ distance: ||P −Q||∞ = maxx|P (x)−Q(X)|

• Variational Distance: Dvar(P ;Q) = maxa∈S |P (a)−Q(a)|

Variational distance is the maximal distance in probability for any event. It
turns out that variational distance is half of L1 norm!

Although these distance metrics are useful, relative entropy is usually more
applicable to probability distributions because it follows the chain rule. Luckily,
relative entropy is an upper bound for L1 norm and consequently variational
distance.

||P −Q||1 ≤ ((2ln2)D(P ||Q))
1
2

7

2 Bayesian Networks

2.1 Exploiting Independence Properties

The main question of the representation problem is how to represent high dimen-
sional distributions compactly. Using independent properties, we can reduce the
amount of parameters needed to represent the distribution.

Consider a series of independent coin tosses. Assigning the result of each
coin toss to random variable Xi, we would need 2n parameters to specify the
distribution; each assignment for (X1...Xn) requires a probability. However, we
recognize that the probability of each coin toss is independent of each other.
Then, we can specify θi for the probability that the coin toss will be heads.
Then, P (xi...xn) =

∏
i θi.

Formally, the space of all joint distributions p1...pn is a 2n subspace of R, the
set {(p1...pn) ∈ R2n : p1 + ... + pn = 1}. On the other hand, the factorization
of the distribution is an n-dimensional manifold in R2n . This factorization,
while being compact, does not have the same expressive power as the joint
distribution.

Bayesian networks are based on the conditional independence properties.
It will attempt to change the joint distribution P (I, S) into the conditional
distribution P (I)P (S|I) via the chain rule.

A simple Bayesian network model is the Naive Bayes model. This model
attempts to predict a class C based on individual features Xi.

Class

X1X2 Xn

The Naive Bayes assumption is that each feature are conditionally indepen-
dent given the class: (Xi ⊥ X−i|C) for all i. With this assumption, we can
factorize the distribution.

P (C,X1, ..., Xn) = P (C)

n∏
i=1

P (Xi|Ci)

If we know each feature, we can predict the the class by maximizing the class
bias.

P (C = c1|x1...xn)

P (C = c2|x1...xn)
=
P (C = c1)

P (C = c2)

∏ P (xi|c1)

P (xi|c2)

In the case of two classes, this model uses 2n+1 parameters! Unfortunately
the Naive Bayes assumption is the source of this model’s flaws. In many cases,
features tend to be correlated to with each other, such as symptoms for med-
ical diagnosis or pixels in computer vision. In these cases, the Naive Bayes
”overcounts” correlated features.

8

2.2 Bayesian Networks

At the core of the Bayesian network is a directed acyclic graph G. The graph
structure can be viewed in two ways. One, it is a data structure that provides
a skeleton for representing a joint distribution compactly through conditional
probability distributions (CPDs). Second, it is a compact representation for a set
of conditional independence assumptions about a distribution. We will examine
both viewpoints in depth throughout the chapter.

Bayesian networks are very useful for several types of reasoning. Causal
reasoning is the prediction of effects from causal factors. Evidential reasoning
is the explanation of causes from effects. In evidential reasoning, there may be
many causes for an event. Intercausal reasoning is the ”explaining away” of
things, where different causes of the same effect interact.

Formally, a Bayesian network structure is a directed acyclic graph whose
nodes represent random variables X1...Xn. Let PaXi denote the parents of Xi

in G and NondescendantsXi denote variables that are not descendants of Xi.
For each Xi

(Xi ⊥ NondescendantsXi |PaXi)

also called local independencies, Il(G). We will see in the following section that
these independencies are equivalent to the conditional factorization discussed in
section 2.1.

2.2.1 From Graphs to Distributions

We have defined our Bayesian network structure based only on the local inde-
pendencies. In this section, we will see how this representation can be used to
specify the standard way of representing a Bayesian, as a graph annotated by
conditional probability distributions.

The Bayesian network G is an I-map of probability distribution P if G
associates with the set of independencies of P , I(P). If G is an I-map of P , we
can compress the joint representation P with the following factorization

P (X1...Xn) =

n∏
i=1

P (Xi|PaXI) (14)

9

also called the chain rule for Bayesian networks. In a distribution of n bi-
nary random variables, we reduce the 2n independent parameters into n ∗ 2k

parameters, where k is the maximum number of parents per node.
The above illustrates the statement that a set of independencies can con-

struct the factorization to local conditional probability models. The converse is
also true; if P is a joint distribution that factorizes according the G, aka satisfies
eq. 14, G is an I-map for P . All distributions that can be factored to the chain
rule of Bayesian networks can be represented by the independencies associated
with the Bayesian network.

2.3 More Independencies

Independencies gives a useful framework for the task of inference, allowing us
to substantially reduce the computation of a probability query. In the previous
sections, we have only analyzed local independencies of Bayesian networks Il(G).
What other independencies are implied by G? In other words, given Il(G),
for what subsets of random variables X,Y, Z ∈ G can we guarantee
(X ⊥ Y |Z)?

2.3.1 D-separation

As a building block to global independencies, we’ll consider four local dependency
trails that will cause r.v. X,Y to be dependent given Z.

• Causal trail (X → Z → Y): active iff Z is not observed

• Evidential trail (X ← Z ← Y): active iff Z is not observed

• Common cause (X ← Z → Y): active iff Z is not observed

• Common effect (X → Z ← Y): active iff Z or descendant is observed.
Also known as v-structure

A trail X1
 ...
 Xn is active if it follows all of these local independencies.
Now, we can use active trails to define d-separation. Let X,Y, Z be three

sets of nodes in G. X and Y are d-separated give Z if there is no active trail
between any node in X,Y given Z.

I(G) = (X ⊥ Y |Z) : d− sepG(X;Y |Z)

are called global Markov independencies. D-separation as a method of finding
independencies is sound and complete.

D-separation as a way to infer independencies would be useless if there were
not an efficient way for determining d-separation between two sets of random
variables X,Y given Z. One way would be to check for active trails between
every pair of random variable between X,Y . However, this may take an expo-
nential amount of time depending on the graph. Fortunately there is a much
faster algorithm only requiring linear time. It follows two phases

1. From leaves to roots, mark all parents of nodes in Z

2. Use breadth first search to follow local dependency trails.

10

2.3.2 I-Equivalence

It might be useful to analyze the similarity of one Bayesian network with an-
other. Two graph structures K1 and K2 are I-equivalent if I(K1) = I(K2).
The set of all graphs over P is partitioned into a set of mutually exclusive and
exhaustive I-equivalent classes, which are the set of equivalence classes induced
by the I-equivalence relation. This means that for a given probability distribu-
tion P , there may be multiple Bayesian networks associated the distribution,
I(P) = I(G1) = I(G2). No intrinsic property allows us to favor one graph over
the other. Luckily, there is a way to specify the entire class of Bayesian networks
associated with P , a topic discussed further in the next section.

Which Bayesian networks are I-equivalent? If G1 and G2 have the same
skeleton and the same set of v-structures, then they are I-equivalent. The
skeleton of a Bayesian network is simply an undirected graph with edges between
every pair of adjacent vertices X,Y in G. Unfortunately, this characterization
is only sufficient, not complete; there exists I-equivalent graphs that do not have
the same v-structure. Consider complete graphs. The global independencies of
these graphs are empty, but any two may have different set of v-structures.

The reason for non-uniqueness in this example is the covering edge. In a v-
structure, a covering edge is the edge between the parents. For (X → Z ← Y),
(X → Y) or (X ← Y) is a covering edge. If there is no covering edge, the v-
structure is known as an immorality. Hence, we have our sufficient and complete
condition for I-equivalence: G1 and G2 are I-equivalent iff they have the same
skeleton and immoralities.

2.4 From Distribution to Graph

So far, we have seen the usefulness of Bayesian network as a compact represen-
tation of P and its independencies. However, for distributions in real life, P
will not follow the nice factorization of Bayesian Networks. To what extent can
we construct a graph G whose independencies are reasonable surrogates for the
independencies in P?

One way to represent distribution P may be to take any Bayesian network
that is an I-map for P . The problem with this solution is obvious; a complete
graph is an I-map for every distribution, since its conditional factorization is the
joint distribution. A nontrivial representation is a minimal I-map, an I-map for
which the removal of a single edge renders it not an I-map of P . The minimal
I-map can be found with the Build-Minimal-I-Map algorithm.

The main idea Build-Minimal-I-Map is simple. Let Construct a Bayesian
network by adding one node at a time. Find parents of node Xi by finding the
minimal set U that satisfies (Xi ⊥ {X1...Xi − 1} − U |U). Set these as parents
because they are d-separate the current node from all other existing nodes.

Unfortunately, there are many different minimal I-maps for a particular dis-
tribution, dependent on the ordering of random variables inputted into Build-
Minimal-I-Map 1. In fact, minimal I-maps may capture little or no independency
at all, since it only needs to satisfy the condition that removing one node will
render it not an I-Map of the distribution.

11

Algorithm 1 Procedure to build a minimal I-map given an ordering

procedure Build-Minimal-I-Map(X1...Xn an ordering of random vari-
ables, I a set of independencies.)

Set G to an empty graph over X
for i = 1, ..., n do

a← {X1, ..., Xi−1} // U is the current candidate for parents of Xi

for U ′ ⊆ {X1, ..., Xi−1} do
if U ′ ⊂ U and (Xi ⊥ {X1, ..., Xi−1} − U ′|U ′) ∈ I then

U ← U ′

end if
end for
// U is a minimal set satisfying (Xi ⊥ {X1, ..., Xi−1} − U |U)
// Now set U to be the parents of Xi

for Xj ∈ U do
Add Xj → Xi to G

end for
end for

end procedure

A graph K is a perfect I-map (P-map) for a set of independencies of distribu-
tion P if I(K) = I(P). Like a minimal I-map, there are many different P-maps
for a set of independencies. To resolve this issue, we will create a partially di-
rected acyclic graph (PDAG) that represents the all P-maps of P . Although
P-maps are not unique, they are unique up to I-equivalence between networks.
In the discussion in section 2.3.2, the class of I-equivalent Bayesian networks
are defined by its skeleton and immoralities. We use these two components to
define the PDAG G∗ used to represent the P-map class of the distribution.

The first task is to identify the undirected skeleton of G∗. If X and Y are
two variables not adjacent in G∗, then there exists a witness set U such that
(X ⊥ Y |U). The witness set U is a witness to X and Y ’s independence. Also
note that the size of the witness set is bounded by the maximum indegree of the
graph, because each node is independent of all other nodes given its parents.
With this fact, we can obtain the skeleton of the distribution.

12

Algorithm 2 Recovering the undirected skeleton for a distribution

procedure Build-PMap-Skeleton(X1, ..., Xn = Set of random variables,
P = distribution, d = Bound on witness set)

Let H be the complete undirecteed graph over X
for Xi, Xj do

UXi,Xj ← ∅
for U ∈Witnesses(Xi, Xj , H, d) do

// Consider U as a witness set for Xi, Xj

if P |= (Xi ⊥ Xj |U) then
UXi,Xj ← U
Remove Xi −Xj from H
break

end if
end for

end for
return (H, {UXi,Xj})

end procedure

This algorithm is in O(n2 ∗
(
n−2
d

)
) = O(nd+2).

The second task is to mark immoralities within the skeleton created by Build-
PMap-Skeleton. A potential immorality in skeleton H is three nodes X−Z−Y
that do not contain an edge between X and Y . There are four cases to consider,
X → Z → Y , X ← Z ← Y , X ← Z → Y , and X → Z ← Y . If G∗ indeed
contains the immorality X → Z ← Y , we know Z will not be contained in any
witness sets UX,Y . Also, if G∗ contains the first three cases, we know Z will be
contained in all witness sets UX,Y . Combining these two results, X − Z − Y is
an immorality iff Z is not in the witness set for X and Y . This motivates
the following algorithm.

Algorithm 3 Marking immoralities in the construction of a perfect map

procedure Mark-Immoralities(X1...Xn = the set of random variables,
S = skeleton, UXi,Xj = witnesses found by Build-PMap-Skeleton)

K ← S
for Xi, Xj , Xk such that Xi −Xj −Xk ∈ S and Xi −Xk /∈ S do

if Xj /∈ UXi,Xj then
Add the orientations Xi → Xj and Xj ← Xk to K

end if
end for

end procedure

The final task is to resolve any inconsistencies with the graph. The first
rule (R1) is the case when (X → Y − Z). The undirected edge Y − Z must be
oriented right, or it would be an immorality. The second rule (R2) is derived
from the acyclicity constraint. If (X → Y → Z) and X − Z, then X − Z must
be oriented toward the right to not create a cycle. The final rule (R3) is more
complex, but uses acyclic and immorality constraints.

13

X

Y Z Y

X

Z

Figure 1: R1

X

Y Z Y

X

Z

Figure 2: R2

X

Y1 Y2

Z

Y1

X

Y2

Z

Figure 3: R3

Using these three rules, we can propagate constraints through our skeleton
oriented by Mark-Immoralities. The algorithm is implemented as follows.

Algorithm 4 Finding the class PDAG characterizing the P-map of distribution

procedure Build-PDAG(X1...Xn = the set of random variables, P = dis-
tribution)

S, {UXi,Xj} ← Build-PMap-Skeleton(X1...Xn, P)
K ← Find-Immoralites(X1...Xn, S, {UXi,Xj})
while not converged do

Find a subgraph in K matching the left-hand side of rules R1-R3
Replace the subgraph with the right-hand side of the rule

end while
return K

end procedure

14

This algorithm is sound and complete for all distributions P that have a
perfect map.

15

3 Undirected Graphical Models

There are some probabilistic distributions that cannot be captured with Bayesian
Networks. Consider the following. There are four students Alice, Betty, Carl,
and Debbie, who are collaborating in homework with each other. However, Al-
ice refuses to work with Carl, and Betty will not work with Debbie. To find
the probability that all four students receive full credit on their homework, the
distribution P (A,B,C,D) satisfies only the independencies (A ⊥ C|B,D) and
(B ⊥ D|A,C). Any Bayesian network I-map would have extraneous edges, and
so would not capture one of the independencies.

A

B D

C

B

A

C

D

Figure 4: Attempt at a Bayesian Network

The first graph includes the extra independency (B ⊥ D|A). The second
graph also includes an extra independency (A ⊥ C).

A more natural representation is to have undirected edges. As you can
see below, an undirected graph perfectly captures the set of independencies.
This graphical model is called a Markov network, a network in which nodes are
variables, and edges are ”probabilistic relationships”.

A

B C

D

Figure 5: Markov Network

In a Bayesian network, we used CPDs to weight edges. However, in a Markov
network, there is no direction. We instead use factors; a factor φ is a function
from a set of random variables D = {X1...Xk} to R. D is known as the scope
and is also denoted Scope[φ].

16

3.1 Parameterization

It might be tempting to associate factors directly to edges in a graph. However,
this limits the expressive power of the model. Consider a fully connected Markov
network over P . If all variables are binary, each factor over each edge has 4
parameters, so the total number of parameters would be 4

(
n
2

)
. However, P has

no independencies and therefore specifies a fully joint distribution, requiring
2n − 1 parameters. Associating factors directly to edges only encodes pairwise
relationships. A more general representation is to allow factors over arbitrary
number of variables.

We may want to specify the fully joint distribution of a Markov network. A
Gibbs distribution parameterized by a set of factors Φ = {φ1(D1), ..., φk(Dk)} if

PΦ(X1...Xn) =
1

Z
P̃Φ(X1...Xn)

where

P̃Φ = φ1(D1) ∗ ... ∗ φk(Dk) (unnormalized measure)

Z =
∑

X1...Xn

P̃Φ(X1...Xn) (partition function)

Each Dk is called a clique potential.
We may want to condition our Markov network to a certain context U . Say

that we have some new information U ⊂ Y and factor φ(Y). A factor reduction
of φ to the context U = u is a factor over scope Y ′ = Y − U such that

φ[u](y′) = φ(y′, u)

This simply removes all entries within the original factor φ(y) that is inconsis-
tent with u. A reduced Gibbs distribution PΦ[u] to the context u is a Gibbs
distribution defined by the set of factors Φ[u] = {φ1[u], ..., φk[u]}. Note that
PΦ[u] = PΦ(W |u) where W = X − U .

Let H be a Markov network over X and context U = u. A reduced Markov
network H[u] is a Markov network over the nodes W = X − U , where we have
an edge X − Y if there is an edge X − Y in H. Note that this is the same
operation as reducing the Gibbs distribution but in graphical form.

3.2 Markov Network Independencies

Like the Bayesian network, we must ensure that Markov networks can encode
a set of independencies. Intuitively, separation between X,Y is when influence
cannot ”flow” between one node and the other. An active path is a path X1 −
...−Xn where there is no observed variable Z that blocks it. Separation occurs
when there is no active path between two subsets of random variables X,Y . We
define globalindependencies encoded by Markov network H as

I(H) = {(X ⊥ Y |Z) : sepH(X;Y |Z)}

Separation is monotonic as Z increases. That is, observing more variables can-
not induce an active path.

With these definitions, we can prove that a Gibbs distribution P over graph
H follows the independencies in I-map H, I(H). Proving the sufficiency of this

17

equivalence is left for exercise. The completeness only holds if P is a positive
distribution and is known as the Hammersly-Clifford theorem.

There are three types of Markov independencies.

• Global: I(H) = {(X ⊥ Y |Z) : sepH(X;Y |Z)}

• Pairwise: Ip(H) = {(X ⊥ Y |X−X,Y) : X − Y /∈ H}

• Local (Markov blanket): Il(H) = {(X ⊥ X−X −MBH(X))|MBH(X)) :
X ∈ X}

The set of global independencies will always be larger than the set of local
independencies, and the set of local independencies will be larger than pairwise
independencies, I(H) ⊇ Il(H) ⊇ Ip(H). For positive distributions, all of them
are equal, I(H) = Il(H) = Ip(H).

3.3 Parameterization Revisited

A Markov network does not generally reveal all the stucture in a Gibbs pa-
rameterization. In a complete subgraph, we cannot tell whether the factors are
pairwise or over different subsets of the clique.

B

A C

Vφ

(a) Factor graph A

BVφ1
Vφ2

A
Vφ3

C

(b) Factor graph B

A

B C

(c) Markov network

Figure 6: Different Factor graphs for the same Markov Network

A factor graph F is an undirected graph with variable nodes and factor
nodes Vφ. A distribution factorizes over F if it can be represented as the set of
factors represented by Vφ.

3.3.1 Log-linear models

Sometimes patterns that arise between different variables can be easier seen in
log-space. An energy function is a factor in log-space

ε(D) = −ln(φ(D))

18

The energy function is a feature, a function from V al(D) to R, where D is the
scope. A feature is analogous to a factor without nonnegativitivity constraints.
We can rewrite the Gibbs distribution in feature form, giving us the log-linear
model.

P (X1...Xn) =
1

Z
exp[−

k∑
i=1

wiεi(Di)]

There are three types of representation of Markov networks.

1. product over clique potentials (Markov factorization)

2. product over factors (factor graph)

3. product over feature weights (log-linear model)

Each factorization is more fine-grained than the previous; that is, a factor graph
can model all Markov factorizations, and a log-linear model can model all factor
graphs. All representations are useful. Markov models are useful for analyzing
independence assertions. Factor graphs are useful for inference, and features
are useful for parameterization in learning as they provide the biggest capacity.

An application of log-linear models are the Boltzman distribution. The
Boltzman distribution is driven by the idea that a neuron is activated by the
strength of the signal coming from neighboring neurons. The probability of Xi

is

P (Xi) = sigmoid(−
∑
j

(wi,jxj)− wi)

where wi is the weight of the connection between Xi and its neighbor Xj , xj
is the activation of neighbor Xj , and wi is some bias on neuron Xi. This
the most popular mathematical approximation of the function employed by
a neuron in the brain. Thus, if we imagine a process by which the network
continuously adapts its assignment by resampling the value of each variable as
a stochastic function of its neighbors, then the ”activation” probability of each
variable resembles a neuron’s activity. This model is a very simple variant of a
stochastic, recurrent neural network.

3.3.2 Eliminating Ambiguity

Unfortunately there are infinitely ways of parameterizing a log-linear model.
Consider a distribution P (A,B,C) such that there are two energy functions
ε1(A,B) and ε2(B,C). For any constant λ, we can redefine

ε′1(a, bi) := ε1(a, bi) + λ

ε′2(bi, c) := ε2(b2, c) + λ

and these new energy functions would be valid parameterizations of P .
The canonical parameterization of a Gibbs distribution resolves this ambi-

guity. Let xZ be the assignment in x to Z, and ξ−Z be the assignment of all
other variables outside Z. Then, the canonical energy function is

ε∗D(d) =
∑
Z⊆D

(−1)|D−Z|l(dZ , ξ
∗
−Z)

19

and the canonical parameterization of the Gibbs distribution is

P (ξ) = exp[
∑
i

ε∗Di(ξ(Di))]

3.4 From Bayesian networks to Markov networks

The factorization of Bayesian networks can be reduced to a Gibbs distribution.

P (X1...Xn) =
∏
i

P (Xi|PaXi)

=
∏
i

φXi(Xi, PaXi)

A Bayesian network conditioned on evidence E = e induces a Gibbs distribution
reduced to the context E = e.

To create a Markov graph structure from a Bayesian network G, we can
moralize the skeleton of G. A moralized graph M(G) of Bayesian network G is
an undirected graph that contains an edge X −Y if: 1. X and Y share an edge
in G or 2. X and Y are parents of the same node. The term ”moralize” comes
from the fact that two parents within an ”immorality” will be ”married”. The
moralized graph is guaranteed to be a minimal I-map for G. If G contains no
immoralities then M(G) is a perfect map for G.

3.5 Partially Directed Models

In this section, we will unify directed and undirected graphical models. This
way, we are able to express both directed and undirected independencies.

A conditional random field is an undirected graph H whose nodes correspond
to X ∪ Y . The network encodes a conditional distribution

P (Y |X) =
1

Z(X)
P̃ (Y,X)

P̃ (Y,X) =

m∏
i=1

φi(Di)

Z(X) =
∑
Y

P̃ (Y,X)

such that each Di + X.

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Figure 7: Conditional Random Field

20

We avoid encoding the distribution over variables in X. This allows the model
a rich set of observed variables X. Defining a conditional distribution lets the
observed variables be more expressive!

A chain graph is a partially acyclic directed graph such that each chain
component is a conditional random field on its parent’s chain component. The
moralized graph corresponds to fully connecting parent components together.
Let P (Ki|PaKi) be a CRF over the parents and Ki, then we can factorize the
distribution P over the chain graph

P (X1...Xn) =

l∏
i=1

P (Ki|PaKi)

We can define all the different independencies in PDAG K.

• Pairwaise: Ip(K) = {(X ⊥ Y |(NondescendantsX−X−Y) : X,Y is nonadjacent, Y ∈
NondescendantsX}

• Local: Il(K) = {(X ⊥ NondescX −BoundaryX |BoundaryX)}

• Global: (X ⊥ Y |Z) if X is separated from Y in M [K[X ∪Y ∪Z]] given Z

All positive distributions P factorizes over PDAG K iff P |= I(K).

21

4 Local Probabilistic Models

So far, we have discussed how to model probability distributions into Bayesian
networks and Markov networks. Conditional probability distributions (CPDs)
represent the relationship between each node with its parents in a Bayesian
network, P (X|PaX). How many different ways are there to model CPDs?

4.1 Tabular CPDs

For a Bayesian network with random variables of discrete values, we can use
a table to represent all P (X|PaX) explicitly. Each entry in a tabular CPD
represents a set of the P (x|paX) for a particular assignment for the node x and
parents paX . It must satisfy:

• Non-negativity: P (x|paX)

• Normalized:
∑
x∈V al(X) P (x|paX) = 1

Unfortunately, the tabular representation of CPDs have several key disad-
vantages. It can only store discrete joint distributions and cannot encode to
an infinite domain. The tabular representation also grows exponentially by the
number of parents, as the number of entries is |V al(PaX)| ∗ |V al(X)|.

Another major flaw is that a table cannot explicitly represent the structure
between PaX and X. Solution? Represent the CPD as a function that, given
paX and x, returns P (x|Pax).

4.2 Deterministic CPDs

A deterministic function maps a value of parents PaX to a value of X:

P (x|paX) =

{
1 x = f(paX)

0 else

For example, X might be the ”or” of its parents. Or P (X|Y, Z) might imply
that X = Y + Z.

22

When modeling a car, we might have four variables T1, ..., T4, each corre-
sponding to a flat in one of the four tires. Naively, we can make each Ti a
parent of all affected variables, like Steering or Ride. However, we can make an
intermediate variable Flat− tire be the OR of all Tis, significantly reducing the
number of parameters required for the CPDs.

Flat

T1 T2T3 T4

S R

Figure 8: Flat tire scenario

Deterministic functions can augment independencies. Consider the above
example. Tis determine Flat. Therefore, (S ⊥ R|T1...T4). Note that this is not
explicit in the global independencies of Bayesian networks.

We can create an algorithm to exploit the fact that observed variables may
add more observed random variables through deterministic functions. The main
idea is to add these additionally observed variables into an expanded observed
set Z+.

Algorithm 5 Computing d-seperation in the presence of deterministic CPDs

procedure Det-Sep(Graph = network structure, D = set of deterministic
variables, X,Y, Z = query)

Z+ ← Z
while there is an Xi that Xi ∈ D and PaXi ⊆ Z+ do

Z+ ← Z+ ∪ {Xi}
end while
return d-sep(X;Y |Z+)

end procedure

This algorithm is sound and finds all independencies implied by the graph
structure and set of deterministic CPDs D.

Some deterministic functions can induce additional independencies. In the
flat-tire scenario, having a flat in one tire T1s will cause steering and ride to
be affected, regardless of the status of the other tires. In other words, (S,R ⊥
T2, T3, T4|t11). Deterministic functions like OR can imply a type of independence
that only holds for particular values.

Let X,Y, Z be a pairwise disjoint set of variables and C be a set of variables
not necessarily disjoint. We say X and Y are contextually independent given Z
and c if

P (X|Y,Z, c) = P (X|Z, c) whenever P (Y, Z, c) > 0

These independences are called context-specific independencies (CSI).

23

4.3 Context-specific CPDs

We can make context-specific independencies explicit. Consider the following
graph.

Letter Apply SAT

Job

Figure 9: Job Application Scenario

Say we want to find the CPD P (J |A,S, L). If teh student does not apply
(A = a0), there is a chance that the company might recruit the student. How-
ever, they won’t have access to recommendation letters or SAT scores. This
means among the 8 values of parents A,S, L, four with A = a0 must induce
an identical distribution. How do we represent this regularity within the CPD
function?

4.3.1 Tree-CPDs

A tree-CPD is a rooted tree representing a CPD. Each leaf is labeled with a
distribution P (x) and interior node is labeled with some variable Z ∈ PaX .
Each interior node has outgoing edges to its children, associated with a variable
assignment Z = zi. A branch is a path beginning at the root to a leaf node,
following the context induced by the branch.

A

(0.8, 0.2) S

L (0.1, 0.9)

(0.9, 0.1) (0.4, 0.6)

a0 a1

s0 s1

l0 l1

Figure 10: Tree-CPD for Job Application Scenario

We can see that the tree models the structural relationships of P (J |A,S, L)
described above. This representation also requires less parameters. We need
parameters for every node of the tree, since those capture all possible contexts.
In the Job application example, we only need 4 parameters, as opposed to the
8 parameters required by a tabular-CPD.

24

Trees are useful for context-specificity. It’s easy to interpret and also easy
to learn automatically from a dataset.

4.3.2 Rule-based CPD

A finer-grained representation of CPDs is rules. A rule ρ is a pair < c; p >
where c is an assignment to some subset of variables C, and p ∈ [0, 1]. C is
the scope of ρ, denoted Scope[ρ]. Rules decompose trees into its basic elements.
Consider the following rule-CPD of P (J |A,S, L).

ρ1 :< a0, j0; 0.8 >

ρ2 :< a0, j1; 0.2 >

ρ3 :< a1, s0, l0, j0; 0.9 >

ρ4 :< a1, s0, l0, j1; 0.1 >

ρ5 :< a1, s0, l1, j0; 0.4 >

ρ6 :< a1, s0, l1, j1; 0.6 >

ρ7 :< a1, s1, j0; 0.1 >

ρ8 :< a1, s1, j1; 0.9 >

In this case, each rule corresponds to a branch in the tree-CPD.
A rule-based CPD P (X|PaX) is a set of rules R such that

• Scope[ρ] ⊆ X ∪ PaX

• Each assignment has one rule

• The resulting CPD is valid (non-negative and normalized).

We can compute entire joint distributions of Bayesian networks by multiplying
a set of rule-CPDs together. Let Ξ be a full instantiation of a BN and R be a
multiset of RX containing rules for P (X|PaX). Then,

P (ξ) =
∏

ρ∈R,ξ∼c

ρ

This simply multiplies all rules consistent with the global context ξ. We can
easily prove this fact from the factorization of Bayesian networks.

4.3.3 Other representations

Other representations include decision trees, multinets, and similarity networks.

• Decision trees - tree-CPDs that allows shared children. This prevents
repeated subtrees.

• Multinet - Multiple Bayesian networks Bc dependent on the context C =
ci. A multinet can be many layers.

• Similarity network - multiple Bayesian networks dependent on a subset
of attributes. A multinet is dependent on variable assignments, while a
similarity network is dependent on related attributes.

25

4.3.4 Independencies

We apply the concept of conditioning to rules. Say c is a context and c′ is a
rule compatible with c. A reduced rule set is

R[c] = {ρ[c] =< c′, p >: ρ ∈ R, ρ ∼ c}

We can define context-specific independencies by finding all Y ⊆ Pax such
thate Y is not the scope of the rules in R[c]. In other words,

(X ⊥c Y |PaX − Y, c)

In Bayesian networks, an edge X → Y in context c is spurious if it satisfies
the above independency. The intuition behind spurious edges is that they are
removed under certain contexts defined by context-specific independencies.

Letter Apply SAT

Job

Figure 11: Job Application Scenario when not applied

In the Job Application example, remember that probability of getting an
offer is not dependent on letters or SAT scores if the applicant did not apply.
The L→ J and S → J is a spurious edge in context A = a0.

There is an algorithm to integrate spurious edges into d-seperation.

Algorithm 6 Computing d-seperation in the presence of context-specific CPDs

procedure CSI-sep(G = Bayesian network, c = context, X,Y, Z = query)
G′ ← G
for each edge Y → X in G′ do

if Y → X is spurious given c in G′ then
Remove Y → X in G′

end if
end for

end procedure

CSI-separation is a variant of d-separation induced by certain context C = c.
It is formally defined by the algorithm above. CSI-separation as a criterion for
context-specific independencies is sound, but not complete.

Consider another job application example that only requires two recommen-
dation letters. However, due to an interviewer bottleneck, only one letter can
be read.

26

Letter1 Choice Letter2

Job

Figure 12: Job Application Scenario 2 when the first letter is chosen

Letter1 Choice Letter2

Job

Figure 13: Job Application Scenario 2 when the second letter is chosen

Under the first context c1, when the first letter is chosen, CSI-sep will find
that L2 → J is spurious, so (L1 ⊥ L2|J, c1). Under the second context c2,
when the second letter is chosen, CSI-sep will find that L1 → J is spurious,
so (L2 ⊥ L1|J, c2). However, under an empty context, CSI-sep finds no spuri-
ous edges and does not find the context-specific independency (L1 ⊥ L2|J,C).
We can see through this example that CSI-sep cannot find all context-specific
independencies because it cannot reason by cases.

4.4 Independence of Causal Influence

In many cases, each parent of a node simply contributes some influence on X.
How can we model P (X|PaX) as simply a combination of influences?

4.4.1 The Noisy-Or Model

Say the probability that a student will get a good grade is dependent on two
binary variables: asking good questions Q and the final paper P . However, even
if he/she asks a good question, the professor might forget it was him/her. To
make matters worse, even if he/she writes a good paper, the professor might
have a hard time reading the handwriting. We can model this by introducing
two new variables: asking good questions and professor remembering Q′ and
writing a good paper and professor being able to read the handwriting P ′. The
relationship can be modeled

27

L

Q′ P ′

Q P

or

Figure 14: Noisy-Or model for Letter Grade Example

We can generalize the noisy-or model. P (Y |X1...Xk) is noisy-or if there are
k + 1 noise parameters λ0, ..., λk such that

P (y0|x1...xk) = (1− λ0)
k∏
i=1

(1− λi)xi

Each λi is called a leak variable.
A useful property of noisy-or models is that each parent Xi is independent

of each other given the child Y . In other words,

(Xi ⊥ Xj |Y) for all i,j

An application of noisy-or models is BN2O networks. These two-layer networks
create a decent baseline implementation for medical diagnosis. Each disease
connects to every symptom, and each symptom’s CPD P (Si|D1...Dk) is a noisy-
or model. During inference, BN2O networks take advantage of the fact that each
disease is independent of each other given the symptoms.

4.4.2 Generalized Linear Models

Consider the body’s immune system. Each invader adds to the burden the
body’s immune system has to bear until its defenses cannot hold anymore. We
can model the probability of a fever as a linear function passed through a smooth
thresholding function

P (Y |X1...Xk) = σ(w0 +

k∑
i=1

wiXi)

where σ is the sigmoid function. This linear model is called a logistic CPD and
is equivalent to a naive Markov model.

The above only applies to binary random variables. We can easily extend
the CPD to the multiple-values by essentially one-hot encoding the multiple
values of Xi and Y and passing them through the softmax function. The CPD

28

P (Y |X1...Xk) is a mulinomial logistic if

lj(X1...Xj) = wj,0 +

k∑
i=1

wj,iXi

P (yj |X1...Xk) =
exp(lj(X1...Xk))∑m

j′=1 exp(lj′(X1...Xk))

4.4.3 General Formulation

Both of the described models satisfy a property called the independence of causal
influence (ICI). Formally, the CPD P (Y |X1...Xk) exhibits ICI if it can be de-
scribed as the following pairwise conditional random field.

Z

Z1 Zk

X1 Xk

Y

Z0

f(x)

. . .

Figure 15: Independence of causal influence

Intuitively, each Xi indicates a hidden binary variable Zi that deterministi-
cally contributes to a threshold Z that ultimately determines Y.

This definition isn’t particularly useful because f(x) can be an arbitrarily
complex function. A more useful definition follows from symmetric decom-
posability. A function f(x1...xk) is symmetric decomposable if there exists a
communicative associative function x � y such that f(x1...xk) = x1 � ... � xk. A
CPD P (Y |X1...Xk) exhibits symmetric ICI if it can be described by the above
network and the CPD of Z is a deterministic symmeteric decomposable func-
tion. The CPD exhibits fully symmetric ICI if the CPDs of different Zis are
identical.

4.5 Continuous Variables

So far, we have only considered discrete variables of finite values. Some variables,
however, are modeled best in continuous space. How can we model the CPD
P (X|PaX) of continuous random variables?

One approach is to discretize intervals. If we have a continuous random
variable for position P , we can create a discrete variable P ′ that tells us whether

29

an object is in [0cm, 15cm], [15cm, 30cm], The issue with this is that the
number of parameters would explode. Each random variable X will require

size of domain
length of an interval and the tabular CPD will require an exponential number of
this factor. Another issue is that you cannot capture an infinite domain. Lastly,
you lose the structure of the distribution. In the position example, there is no
notion of ”closeness” between two values of P ′. The value p′1 = [0cm, 15cm] is
the same distance to p′2 = [15cm, 30cm] as it is to p′3 = [30cm, 45cm].

The second approach is to create a linear Gaussian CPD. Let Y be a con-
tinuous variable with continuous parents X1, ..., Xk. Y has a linear Gaussian
model if

p(Y |x1...xk) = N (β0 + β1x1 + ...+ βkxk;σ2)

We can also write it as a linear function of random variables

Y = β0 + β1X1 + ...+ βkXk + ε

where ε ∼ N (0;σ2). Unfortunately, this model doesn’t allow the variance of Y
to be dependent on its parents Xi.

The last approach is to use several linear Gaussian CPDs to incorporate
both discrete and continuous random variables.

4.5.1 Hybrid Models

Say we want to incorporate both discrete and continuous random variables.
There are two cases we must consider: discrete/continuous parents determining
a continuous child and discrete/continuous parents determining a discrete child.

For the first case, we can simply define a linear Gaussian CPD for every
entry in the table-CPD generated by the discrete parents. Let X be a con-
tinuous variable, U = {U1...Um} be its discrete parents and Y = {Y1...Yk} be
its continuous parents. X has a conditional linear Gaussian (CLG) if for all
u ∈ V al(U)

P (X|u, y) = N (au,0 +

k∑
i=1

au,iyi;σ
2
u)

A CLG network is a BN in which discrete variables only have discrete parents
and continuous variables has a CLG CPD.

A CLG induces a Gaussian mixture, a weighted average of Gaussians. Since
each Gaussian component corresponds to a context u, the number of Gaussain
components is exponential to the number of discrete parents.

For the second case, we can use a threshold function of some form

P (u′) =

{
0.9 y ≤ 65

0.05 else

The issue with this representation is that it is coarse and discontinuous. A more
natural way to represent discrete random variables is to use a logistic or softmax
function. Of course, this will create random variables that are continuous but
act similar to discrete variables.

30

4.6 Conditional Bayesian network

The pairwise CRF representing the independence of causal influence 15 does
not specify a joint distribution over the random variables X and Y . Rather, it
describes the conditional distribution between parents X and child Y through
hidden variables Z. We can generalize this concept to any Bayesian network.

A conditional Bayesian network has nodes in disjoint sets of random vari-
ables X,Y,Z The variables in X are called inputs, Y is called the outputs, and
Z is encapsulated. X ∈ X has no parents. The network defines a conditional
distribution

Pβ(Y,Z|X) =
∏

X∈Y,Z
P (X|PaX)

The marginal distribution P (Y|X) is computed

Pβ(Y|X)−
∑
Z
Pβ(Y,Z|X)

An encapsulated CPD is one represented using a conditional Bayesian network.
Encapsulation black-boxes the individual CPDs and is useful from an engineer-
ing perspective for the following reasons

• Complex systems can be built with encapsulated subsystems

• The are easier to debug

• Similar subsystems can us the same Bayesian network templates via In-
terfaces and subclasses

These advantages creates a framework for object-oriented Bayesian networks.

31

5 Template-Based Representations

So far, the models we dealt with were variable-based, where the set of random
variables and relationships between variables were fixed. Only the values of the
variables could change. In this section, we introduce a higher-level representa-
tion that allows us to scaffold more expressive models through templates.

5.1 Temporal Models

We will begin by observing a specific type of template model: the temporal
model. Temporal models are used to model dynamic settings, where the state of

the world evolves over time t. X
(t)
i represents an instantiation of the template

variable Xi. A trajectory is a ”possible world” in our probability space: an

assignment of values for each variable X
(t)
i for each relevant time t.

We assume that our system is a set of time slots: measurements of the
system state taken at predetermined intervals. Since the current state X T is
only dependent on attributes in previous time steps, we can use the chain rule
to reparameterize the distribution

P (X (0:T)) = P (X (0))

T−1∏
t=0

P (X (t+1)|X (0:t))

If we assume the Markov assumption (X (t+1) ⊥ X (0:(t+1))|X (t))

P (X (0:T)) = P (X (0))

(T−1)∏
t=0

P (X (t+1)|X (t))

Graphically, the markov assumption implies variables at state t is only directly
connected to variables at state t− 1.

In practice, the Markov assumption needs only to be a reasonable approxi-
mation to the world. In most cases, we can apply this assumption. We can also
define models that are semi-Markov.

W can assume a dynamic system is stationary where P (X (t+1)|X (t)) is the
same for all t. We represent a transitional model P (X t′ |t) with

P (X (t+1) = ξ′|X (t) = ξ) = P (X ′|X)

5.1.1 Dynamic BN

We can represent probability distributions over infinite trajectories compactly
with the initial distribution and transition model P (X ′|X). The transition
model is a type of conditional BN called a 2-time-slice BN (2-TBN). A 2-TBN
for a process over X is a conditional Bayesian Net over X ′ given XI , where XI
is a set of interface variables.

32

For each template variable Xi, the CPD P (X ′i|PaX′
i
) is a template factor.

A dynamic Bayesian network is a pair (β0, β→) where β0 is the initial state and
β→ is a 2-TBN for the process.

A hidden Markov model is the simplest nontrivial dynamic Bayes net. A
factorial HMM is a dynamic BN whose 2-TBN has the structure of Xi → X ′i
with a single observed variable Y ′. A coupled HMM is a DBN whose 2-TBN
has chains interacting between adjacent chains and each having its own private
observed variable Y ′.

5.1.2 State-observation Models

Another way to view temporal processes is a state-observation model. We seper-
ate the system dynamics from the observations, which is useful if observations
are obtained from a noisy sensor. We define two components: the transition
model P (X ′|X) and the observation model P (O|X). We will consider two
state-observation models: HMM and linear dynamical systems.

Although HMMs are a type of simple DBN, it encodes structure left implicit
by a DBN. The transition model P (S′|S) is assumed to be sparse, with may
transitions P (s′|s) with zero probability. An alternative way to represent an
HMM is shown below. This is analogous to a probabilistic finite-state automa-
ton.

33

In most cases the observation model is deterministic P (o|s) = 1. In other
cases, we may have sensors that work with probability p. In this case, P (o|s) =
p.

Despite being the simplest temporal model, HMMs are extremely useful. It
is the key technology in all speech-recognition systems. There are three dis-
tinct layers: the language model, the word model, and the acoustic model. The
language model represents the distribution over sequences of words. Usually,
a bigram model P (Wi|Wi−1) suffices. The word model describes the compo-
sition of individual words in terms of phonemes. The International Phonetic
Alphabet contains about 100 phonemes, and each word is composed of these
phonetic units. The acoustic model maps short time segments (around 10-
25ms) to phonemes. A hierarchical HMM of these three layers defines the joint
distribution over words, phonemes, and acoustic units. Each state has the form
(w, i, j). where w is the current word, i is the phoneme, and j is the sound
interval. This model obtains state-of-the-art performance.

A linear dynamical system, sometimes called Kalman filters, can be viewed as
a dynamic Bayesian network where all variables are continuous and dependencies
are linear Gaussians.

X

V

X ′

V ′

Figure 16: Vehicle position Scenario

Say we want to model a moving vehicle over time. The transition model
would have 2 CPDs, P (X ′|X,V) = N (X+V∆;σ2

X) and P (V ′|V) = N (V ;σ2
V),

where ∆ is the length of our time slice. The observation model is a noisy
measurement of X, P (O|X) = N (X;σ2

X).
Traditionally, linear dynamical systems are represented by vector-valued ran-

dom variables.

P (X(t)|X(t−1)) = N (AX(t−1);Q)

P (O(t)|X(t)) = N (HX(t);R)

34

We can generalize the linear dynamical model by allowing transitions be any
function. An extended Kalman filter is a system where state and observation
variables are real-valued vectors, while state transition and observation models
are nonlinear functions

P (X(t)|X(t−1)) = f(X(t−1);U (t−1))

P (O(t)|X(t)) = g(X(t);R(t−1))

Instead of using stochastic CPDs to model the system, we split the model in
terms of deterministic functions and noise.

What if we want to model a vehicle that switches lanes? Depending on
whether it stays, turns right, or turns left, the dynamics of the system will
change. In a switching linear dynamical system (SLDS), we can switch between
different modes. We introduce a ”mode” variable D that is a parent of some/all
variables in the model.

5.2 Template Variables and Template Factors

Dynamic Bayesian networks are only one type of template-based model. We
will now provide the fundamental building blocks that generalizes to not only
temporal models but all template-based models.

Say we want to model a student’s grade in certain courses. Each student
and course is an object, an instantiation of the Student and Course class. The
template variable or attribute can instantiate a specific random variable with a
tuple of arguments, eg Grade(George, CS170). Hence, template attributes are
a ”generator” for random variables in a given probability space. A relation is a
property of a set of objects. Took-course might be a relation between students
and courses.

Given a set of template attributes, we can produce an infinite set of proba-
bility models depending on different instantiations of objects. For example, we
can define attributes Grade(student, course), SAT(student), Diffuiculty(course).
The probability space of objects (S = {George,Alice}, C = {CS70,MATH110})
is different from that of objects (S = {George,Betty, Carol}, C = {CS170, STAT134}),
but they both use the same template attributes.

An object skeleton K specifies a finite fixed set of objects OK [Q]

OK [U1...Uk] = OK [Q1[U1]] ∗ ... ∗OK [Qk[Uk]]

where Ui is a typed logical variable and Q[Ui] is the class associated with the
variable. We can just treat Ui as a reference to the class Qi. An attribute is
a function A(U1, ..., Uk) and U1...Uk is called the argument signature denoted
α(A).

We define sets of ground random variables

XK [A] = {A(γ) : γ ∈ ΓK [A]}
XK [N] = ∪A∈NXK [A]

where ΓK [A] is the set of possible assignments to the logical variables in the
argument signature of A. The ground random variables are the instantiated
random variables of the distribution, eg (George, CS170). Each set of ground

35

random variables defines a probability space over different object skeletons, an
observation observed in the above example.

There are limitations to this model. First, we may want to provide additional
information between objects via relations, such as the structure in a family tree.
Second, we assumed the number of objects is fixed. In certain domains, we may
be uncertain about this number

Lastly, we want to define the CPD or factors over the instantiated ground
variables. A template factor is a function ξ defined over a tuple of template
attributes A1...Al. It is a mapping between V al(A1) ∗ ... ∗ V al(Al) 7→ R. An
instantiated factor is a particular instance of a template factor.

5.3 Directed Probabilistic Models for Object Relational
Domains

Using the framework of the previous section, we can specify a template-based
representation language that can encode directed probabilistic models.

5.3.1 Plate Models

In a plate model, an object type is called a plate. There may be several instan-
tiations of a plate within the ground Bayesian Network. Say we want to model
how intelligence I(s) affects grades G(s). The following is the plate model and
ground Bayesian network.

Figure 17: Student example with single plate

A single plate doesn’t show the full expressive power of plate models. Say
we want to factor in a course’s difficulty. The representation would require a
nested plate

36

Figure 18: Student example with nested plates

We might want to represent an intelligence attribute to take only a student
as an argument, not a (student, course) pair. We can separate them using
overlapping plates

Figure 19: Student example with overlapping plates

Plate models provide a language for encoding models with repeated structure
and stored parameters. They can lead to more informed and computationally
inexpensive inferences. They can also specify infinite sets, as the set of possible
objects is infinite.

A plate model defines, for each template attribute A ∈ N with argument
signature U1...Uk

• a set of template parents

PaA = {B1(U1)...Bl(Ul)}

• a template CPD P (A|PaA)

37

Attributes can only depend on other attributes of the same parents. We allow
plates to intersect on shared attributes. A plate model and object skeleton K
defines a ground Bayesian network βMPlate

K . Let A(U1...Uk) be many template
attributes inN . Then, for any assignment γ =< U1 7→ u1...Uk 7→ uk >∈ Γ[A] >,
we have A(γ) in the grounded network, with B(γ) for all B ∈ PaA as parents
and instantiated CPD P (A(γ)|PaA(γ)).

The plate model is limited by the constraint: attributes can only depend on
attributes of the same object. This prevents us from being able to create a gene-
ology tree because the Genotype(child) is dependent on the Genotype(mother).
Similarly, we can’t specify temporal models because the car’s current position
is dependent on a car’s previous position/velocity.

5.3.2 Probabilistic Relational Models

In the Genotype example, we might want to allow Genotype(U) to depend on
Genotype(U ′). However, we must specify for which objects the dependency is
applicable. We can specify a guard like Mother(U,U ′) that the dependency is
contingent on.

For a template attribute A, we define a contingency dependency model as a
tuple consisting of:

• A parent argument signature α(PaA) which is a tuple of typed logical
variables Ui such that α(PaA) ⊇ α(A)

• A guard Γ which is a binary-valued formula defined in terms of a set of
template attributes PaΓ

A over the argument signature α(PaA)

• a set of template parents PaA = {B1(U1)...Bl(Ul)}

The contingency dependency model lets each attribute be applicable to only
certain objects through the use of ”guards”.

A probabilistic relational model (PRM) MPRM defines a contingency de-
pendency model and template CPD for each attribute A ∈ N . The difference
between the plate model and PRM is the logical attributes of the parents do
not necessarily need to be a subset of that of the child.

A PRM MPRM and object skeleton K define a ground Bayesian network
βMPRM

K as follows. For any assignment γ ∈ ΓK [A], we have a variable A(γ)
in the ground network. This varaible has, for any B ∈ PaΓ

A ∪ PaA and any
assignment γ′ to α(PaA)− α(A), the parent that is B(γ, γ′).

One issue with allowing attributes of one object depend on that of another is
that dependency structure may be arbitrarily large. We can solve this issue by
defining a relational skeleton Kr that defines a certain set of relationships be-
tween objects. Since guards and therefore CPDs will be bounded by these rela-
tions, we have successfully restricted the # of CPDs in the PRM. The relational
skeleton also addresses the problem of cycles. Since the relational structure is
usually relatively simple, the resulting grounded BN is acyclic.

When defining the CPD, we must allow for variable number of parents.
Not only that, we must also have a symmetric CPD because each instan-
tiation of objects are interchangeable. The two approaches are a symmet-
ric CPD or aggregator CPD. For example, we may use a noisy-or CPD or
min(parentV alues)/max(parentV alues). This defines the relation between the
parents B ∈ PaA and child A.

38

We may want a test at a template-levegl whether the generated ground BN
has a possibility of being cyclic. Fortunately, if there is no cycle in the template
dependency graph, there will be no cycle in the grounded network. A template
dependency graph MPRM contains a node for each template-level attribute A,
and directed edge B → A if B ∈ PaΓ

A ∪ PaA.

5.4 Undirected Representation

The undirected equivalent is fairly similar to direted template-based models. A
relational Markov network MRMN is defined in terms of a set Λ of template
features where each λinΛ comprises:

• a real-valued template feature fλ whose arguments areN(λ) = {Λ1(U1)...Λl(Ul)}

• a weight on the feature wλ ∈ R

Given relational Markov Network MRMN and an object skeleton K, we can
define a grounded Gibbs distribution PMRMN

K as follows:

• variables in the network are XK [N]

• PMRMN

K contains a term exp(wλ ∗ fλ(γ)) for each feature template λ ∈ Λ
and each assignment γ ∈ ΓK [α(λ)]

The Gibbs distribution defines a grounded Markov Network, where we connect
every pair of variables that appear together in some factor.

One issue is the right aggregated function of the log-linear model. Each
occurrence of a feature has a log-linear contribution to the unnormalized prob-
ability density. Unfortunately, this linear aggregation behavior may not be
applicable in certain domains. Consider a ”viral marketing” example - where a
social network of individuals related by Friends(P, P ′) has interest in a gadget
modeled by Gadget(P). In a log-linear model, the unnormalized probability
that a person is interested in the gadget grows log-linearly as with the number
of friends interested in the gadget. A more realistic model will account for the
”saturation effect” where the impact of friends’ interests diminish as the number
increases.

Another issue is the dense connectivity. We can fix this issue by defining a
relational skeleton and simplifying the model.

A final issue only arising in undirected models is the global influence fac-
tors can have. Since introducting a new object can drastically change the fac-
tors/values of the current model, it is problematic to use one instance of a
template-based model to help construct another instance.

39

Application: collective classification of webpages
In a university sebsite, we may want to classify pages by ”professor”,
”student”, ”project” using words within the webpage. However, we can
refine our classification by incorporating links into the model: ”professor-
proj”, ”student-proj” links can be set to have higher clique potentials.
Incorporating links expands the classification task to not a single web-
page but the entire collection of webpages.

• Input: object with features, entity relations

• Output: collective classification of objects

5.5 Structural Uncertainty

One of the biggest issues facing template-based models is structural uncertainty.
Distributions in the real world may not have set number of objects and relations.
Different models will handle structural uncertainty differently. First, we will
define two types of structural uncertainty: relational uncertainty and object
uncertainty.

5.5.1 Relational Uncertainty

Say that we are creating a relational skeleton that is bipartite for which professor
teaches a course. There are 10 professors and 20 courses. However, the relation
between professors and courses is stochastic. How can we model uncertainty in
relations?

One approach is to model each relation independently. The relation Teaches(P,C)
is defined to be true with a probability 0.1. The expected number of courses per
professor is 2, and expected number of professors for a course is 1. So far, every-
thing seem reasonable. With further analysis, however, we can see this model
is not realistic. The probability that a particular professor teaches l courses fol-
lows a binomial distribution

(
20
l

)
0.1l0.920−l, so the probability that at least one

professor teaches 5 or more courses is 29%. The issue with this approach is that
each relation is chosen independently, when in reality Teaches(P,C) affects the
distribtuion of another Teaches(P,C ′).

Another approach is to introduce set-valued functions, a function that maps
one set of objects to another. In the above example, we might define a function
CoursesOf(p) that maps to all courses taught by p. Though this allows de-
pendencies between relations, it still allows the possibility that a single courses
may be taught by 10 professors.

There is no natural way to guarantee structural properties of a
relation.

Luckily, this discussion only applies to directed template structures. An
undirected framework can define a template feature ascribing a high probability
that a set of relations is true. A low potential for template event

Teaches(P,C) = true, Teaches(P ′, C) = true

will enforce the constraint that at most one professor teaches a course.

40

5.5.2 Object Uncertainty

Sometimes we won’t know the set of objects the world may have. For example,
a single person may be a student 34 in CS101, student 57 in Econ203, eldest
daughter of John and Mary, and so on. Should we treat this person as 3 objects
or 1?

A very natural solution is to introduce reference objects r. We can define a
relation RefersTo(r, o) that is true whenever r refers to an object o. Alterna-
tively, we can efine an object-valued function Reference(r) 7→ o.

Attribute similarity potentials measure how similar a reference object is to
the true object. For example, ”John Franklin Adams” might go by ”JF Adams”
in one context and ”Frank Adams” in another. Trying to determine which
reference corresponds to an object is known as the correspondence problem.

An alternative approach is to eliminate the ”true object” and have references
point to each other. We can introduce the binary relation SameAs(r, r′) To
ensure consistency, SameAs satisfies the following properties:

• Reflexivity: SameAs(r, r)

• Symmetry: SameAs(r, r′) iff SameAs(r′, r)

• Transivity: SameAs(r, r′) and SameAs(r′, r′′), then SameAs(r, r′′)

This approach has several problems. There is no natural way to put factors that
should apply once per entity. For example, say we want to define a template
factor on {Name(R), Gender(R)}. Then, the factor will apply to multiply times
to the same person if they have multiple references. The same sort of ”multi-
plicative problem” will occur during inference.

5.6 Conclusion

• Template-based representations allow us to encode potentially infinite set
of distributions

• They are useful for inter-object reasoning

• Inference at a template-level is much more efficient than at the ground
network level

• Relational language such as function symbols, quantifiers, etc. can give
us more expressive firepower

41

6 Gaussian Network Models

Our discussion so far has been about discrete random variables. Gaussians
are a simple way to encode continuous random variables with two glaringly
simple assumptions: exponential decay of probability density away from the
mean and linearity between variables. These assumptions allow Gaussians to
be modeled easily. Surprisingly, Gaussians provide a good estimate for many real
world applications. It can also be extended to other distribtuions like Guassian
mixtures or nonlinear interactions.

6.1 Multivariate Gaussians

The density function of a multivariate Gaussian is definedby its mean vector µ
and covariance matrix Σ.

P (x) =
1

(2π)n/2|Σ|0.5
exp[−1

2
(x− µ)TΣ−1(x− µ)]

To guarantee a pdf that integrates to 1, Σ must be positive definite

∀x ∈ Rn, xTΣx > 0

This also guarantees a nonzero determinant |Σ| since positive definite matrices
are nonsingular.

The inverse covariance matrix I = Σ=1 is sometimes called the information
matrix and we can use it to get the alternative form of the Gaussian density
function:

−1

2
(x− µ)TΣ−1(x− µ) = −1

2
(x− µ)T I(x− µ)

= −1

2
[xTJx− 2xTJµ+ µTJµ]

The last term is a constant so

p(x) ∝ exp[−1

2
xTJx+ (Jµ)Tx]

which is called information form. h = Jµ is called the potential vector.
There are two operations we want to perform with the Gaussian pdfs:

• Compute the marginal AY from joint distribution {X,Y }. Since

p(X,Y) = N (

[
µX
µY

]
;

[
ΣXX ΣXY
ΣY X ΣY Y

]
)

it is evident that Y ∼ N (µY ; ΣY Y)

• Conditioning on Z = z where Z ⊆ X. We can jthe evidence into the pdf
and get a new pdf. It will be a Gaussian with parameters of the subset of
X − Z.

Independencies are explicitly encoded within the Gaussian pdf Xi and Xj are
independent iff Σi, j = 0.

42

6.2 Gaussian Bayesian Network

Now, we have explicitly described the Gaussian probability distribution, we
can discuss how to encode this distribution to a directed model. A Gaussian
Bayesian network is a BN whose variables are continuous and CPDs are linear
Gaussians. A Gaussian BN will always define a joing Gaussian distribution. Let
Y be a linear Gaussian of parents X1...Xn.

P (Y |x) = N (β0 + βTx;σ2)

If X1...Xk are jointly Gaussian N (µ; Σ), then

• Y ∼ N (µY ;σ2
Y), where

µY = β0 + βTµ

σ2
Y = σ2 + βTΣβ

• The joint distribution {X,Y } is normal where

Cov[Xi;Y] =

k∑
j=1

βjΣi,j

Through induction, we can see that a Gaussian BN will be a Gaussian.
The converse is also true; conditioning a Gaussian results in a normal distri-

bution where there is a linear dependence on conditioned variables. Let {X,Y }
have a joint Gaussian distribution. Then the conditional density

P (Y |X) = N (β0 + βTX;σ2)

where

β0 = µY − ΣY XΣ−1
XXµXβ = Σ−1

XXΣY Xσ
2 = ΣY Y − ΣY XΣ−1

XXΣXY

These theorems allow us to efficiently transform a Gaussian to a linear Gaussian
and vice versa. Both are relatively compact and is useful for different tasks.

6.3 Gaussian Markov Field

A Gaussian distribution can also be represented as a Markov Random Field
(MRF). First, we use the information form to break up the terms:

P (x) ∝ exp[−1

2
xTJx+ (Jµ)Tx]

into single-variable part

−1

2
Ji,ix

2
i + hixi

and pairs of variables

−1

2
[Ji,jxixj + Jj,ixjxi] = −Ji,jxixj

43

This induces a pairwise Markov Network where node potentials are derived from
the single-variable part, dependent on the diagonal elements of the information
matrix, and edge potentials are derived from the pairwise part, dependent on off-
diagonal elements of the information matrix. This network is called a Gaussian
MRF (GMRF).

To convert a pairwise Markov Network to a multivariate Gaussian distri-
bution, we can write node and edge potentials as follows, where di and ai are
learned/solved coefficients.

εi(xi) = di1 + di1xi + di2x
2
i εi,j(xi, xj) = ai,j0,0 + ai,j0,1xi + ai,j1,0xj + ai,j1,1xixj + ai,j2,0x

2
i + ai,j0,2x

2
j

By aggregating terms, we can reformulate any such set of potentials in the
log-quadratic form

P (X) = exp[−1

2
xTJx+ hTx]

where J is symmetric. This Markov network is a Gaussian density iff J is
positive definite.

Unfortunately, there is no way to test whether a GMRF encodes a valid
Gaussian, besides computing J and checking whether it’s positive definite. In
particular, there are no local tests that can be applied to network parameters
that precisely characterizes a valid Gaussian. There are, however, sufficient tests
that can induce a valid density.

One simple test is performed by checking the information matrix. A quadratic
MRF is said to be diagonally dominant iff for all i∑

j 6=i

|Ji,j | < Ji,i

If an MRF is diagonally dominant, it defines a valid Gaussian MRF.
Another test is to check whether each pairwise edge potential is normalize-

able. A quadratic MRF is said to be pairwise normalizeable if

• for all i, di2 ¿ 0

• for all i, j, the 2x2 matrix [
ai,j02 ai,j11/2

ai,j11/2 ai,j20

]
is positive semidefinite

If a pairwise MRF is pairwise normalizeable, it is a GMRF. These tests only
test a particular parameterization of the MRF. It is completely possible that a
different parameterization of the same density induces a valid GMRF.

6.4 Conclusion

• The three representational classes, multivariate Gaussians, linear Gaussian
BN and GMRFs, are equivalent.

• The undirected models have a particularly elegant connection to Gaus-
sians, as zeros in the information matrix correspond precisely to missing
edges in the minimal I-map Markov network.

44

7 Exponential Family

In the past chapters, we focused on representing a single distribution. Now, we
will consider a family of distributions to lay a theoretical groundwork for learning
and inference. This chapter is somewhat abstract and heavily mathematical.

7.1 Exponential Families

An exponential family P over X is specified by four components.

1. a sufficient statistic function τ from assignments to X to RK

2. a parameter space that is a convex set Θ ⊆ RM of legal parameters

3. a natural parameter function t mapping parameters in RM to distribution
in RK .

4. an auxiliary measure A over X

Each vector of parameters θ ∈ Θ specifies a distribution Pθ in the family at

Pθ(ξ) =
1

Z(θ)
A(ξ)exp[< t(θ), τ(ξ) >]

where < t(θ), τ(ξ) > is the inner product of the vectors t(θ) and τ(ξ) and

Z(θ) =
∑
ξ

A(ξ)exp[< t(θ), τ(ξ) >]

is the partition function of P , which must be finite. The parametric family P
is defined as

P = {Pθ : θ ∈ Θ}

Intuitively, a parameter vector θ determines a member of the family. The suffi-
cient statistic function τ summarizes the aspect of an instance that are relevant
for assigning probability. The function t maps parameters to the space of suf-
ficient statistics. An auxiliary measure A assigns additional preferences among
instances not dependent on parameters.

The Bernoulli distribution is in the exponential family. We can set

τ(X) =< 1{X = x1}, 1{X = x0} >

a numerical vector representation of the value of X, and

t(θ) =< lnθ, ln(1− θ) >

It’s easy to see that for when X = x1, τ(X) =< 1, 0 > and so

exp{< t(θ), τ(X) >} = e1∗lnθ+0∗ln(1−θ) = θ

Similarly, when X = x0, exp{< t(θ), τ(X) >} = 1− θ. So when Z(θ) = 1, this
representation is the Bernoulli distribution.

Most parameterized distribution encountered in probability books are in teh
exponential family, including Poisson distributions, exponential distributions,
geometric distributions, and gamma distributions.

We enforce additional constraints to the exponential families to help with
inference and learning.

45

1. Parameter space Θ must be ”well-behaved”, aka convex and open in RM

2. Each parameter family must be nonredundant, or

θ 6= θ′ ⇒ Pθ 6= Pθ′

We can check for nonredundancy by checking if function t is invertible.

7.1.1 Linear Exponential Families

A linear exponential family is an exponential family where the natural parameter
function t is the identity function. This means the parameters are natural
parameters, parameters with the same dimension K as the representation of
the data. A linear exponential family has the form

Pθ(ξ) =
1

Z(θ)
exp[< θ, τ(ξ) >]

The natural parameter space is the space of allowed parameters for a certain
sufficient statistic function τ where the pdf is legal (normalizeable) or

Θ = {θ ∈ RK :

∫
exp[< θ, τ(ξ) >]dξ <∞}

A linear exponential family must have an open, convex natural parameter space.
All exponential families can be turned into linear exponential families by

representing θ by t(θ). This is helpful because linear exponential families are
simpler; we only need to define τ because all other variables are implicitly
defined. However, this isn’t always trivial.

Consider the Bernoulli distribution where t(θ) =< lnθ, ln(1 − θ) >. This
curve is not an open, convex set, so setting θ′ = t(θ) would not be a natural
parameter space.

Alternatively, we might want to use a parameter space in two dimensions,
corresponding to the sufficient statistic function τ(X) =< 1{X = x1}, 1{X =
x0} >, which gives

Pθ(x) ∝ exp[< θ, τ(x) >]

= exp[θ1{X = x1}+ θ21{X = x2}]

Unfortunately, this family is redundant. For every constant c, the parameters
[θ1 + c, θ2 + c] defines the same distribution as [θ1, θ2].

Thus the 1d case is not well-behaved, while the 2d case overparameterizes.
Fortunately, we can use an alternate 1d representation

τ(x) = 1{X = x1}

t(θ) = ln
θ

1− θ

and so

Z(θ) = 1 +
θ

1− θ
= θ

46

Thus,

Pθ(x
1) = (1− θ) θ

1− θ
= θ

which is a linear exponential representation of the Bernoulli distribution.
Are there families that are not linear? Yes, but we will discuss that in

another chapter.

7.2 Factored Exponential Families

So far, we have only discussed univariate probability distributions. What about
distributions with multiple random variables? Consider the log-linear model

P (X1...Xn) ∝ exp[
k∑
i=1

θi ∗ fi(Di)]

This distribution is a linear exponential family where

τ(ξ) = [f1(d1)...fk(dk)]

Since all Markov networks can be represented as a log-linear model, this suffices
to show the family of MNs are linear exponential.

Exponential families with these product forms are called exponential factor
families where a factor is

φθ(ξ) = A(ξ)exp[< t(θ), τ(ξ) >]

and the composition of factors φ1...φk parameterized by θ1...θk is

Pθ(ξ) ∝
∏
i

φθi(ξ)

= (
∏
i

Ai(ξ))exp[
∑
i

< ti(θi), τi(ξ) >]

We can see that the composition of exponential factors is an exponential family
with τ(ξ) = τ1(ξ) ◦ ... ◦ τk(ξ) and natural parameters t(θ) = t1(θ) ◦ ... ◦ tk(θk).
This can be easily extended to linear exponentials: the composition of linear
exponential factors is a linear exponential family.

Bayesian networks also follows the exponential form through the product of
CPDs. However, it turns out a BN does not define a linear exponential family.
In general, any Bayesian network that contains immoralities does not induce a
linear exponential family.

7.3 Entropy and Relative Entropy

Comparing entropy and maximizing entropy subject to constraints is useful in
many tasks. Characterizing entropy within exponential families will allow us to
efficiently perform both tasks.

Let Pθ be a distribution in an exponential family. Then

HPθ (X) = lnZ(θ)− < EPθ [τ(X)], t(θ) >

47

We can see that entropy is only dependent on the expectation of sufficient
statistics τ(X). The entropy of a Markov network can be found in this form. If
P (X) = 1

Z

∏
k φk(Dk) is a Markov network.

HP (X) = lnZ +
∏
k

EP [−lnφk(Dk)]

Since the number of joint assignments are exponential, we use clique potentials
to specify entropy. Note that this form is dependent on the global computation
of Z and marginals for each clique P (Dk) which are nontrivial.

The entropy of a BN can also be found in a similar fashion. If P (X) =∏
i P (Xi|PaGi) is a distribution consistent with Bayesian network G. then

HP (X) = EP [−lnP (X)]

= EP [−
∑
i

ln(P (Xi|PaGi)]

=
∑
i

EP [−lnP (Xi|PaGi)]

=
∑
i

HP (Xi|PaGi)

Each conditional entropy HP (Xi|PaGi) can be found

HP (Xi|PaGi) =
∑
paGi

P (paGi)HP (Xi|paGi)

by a weighted average over entropies HP (Xi|paGi). Each weighting term P (paGi).
is dependent on the entire joint distribution and other CPDs, so we cannot
simply multiply local entropy calculations to find the total joint entropy.

48

	Foundations
	Probability Theory
	Basic Concepts
	Querying a Distribution
	Continuous Spaces

	Information Theory
	Compression and Entropy
	Conditional Entropy
	Relative Entropy and Distance between Distributions

	Bayesian Networks
	Exploiting Independence Properties
	Bayesian Networks
	From Graphs to Distributions

	More Independencies
	D-separation
	I-Equivalence

	From Distribution to Graph

	Undirected Graphical Models
	Parameterization
	Markov Network Independencies
	Parameterization Revisited
	Log-linear models
	Eliminating Ambiguity

	From Bayesian networks to Markov networks
	Partially Directed Models

	Local Probabilistic Models
	Tabular CPDs
	Deterministic CPDs
	Context-specific CPDs
	Tree-CPDs
	Rule-based CPD
	Other representations
	Independencies

	Independence of Causal Influence
	The Noisy-Or Model
	Generalized Linear Models
	General Formulation

	Continuous Variables
	Hybrid Models

	Conditional Bayesian network

	Template-Based Representations
	Temporal Models
	Dynamic BN
	State-observation Models

	Template Variables and Template Factors
	Directed Probabilistic Models for Object Relational Domains
	Plate Models
	Probabilistic Relational Models

	Undirected Representation
	Structural Uncertainty
	Relational Uncertainty
	Object Uncertainty

	Conclusion

	Gaussian Network Models
	Multivariate Gaussians
	Gaussian Bayesian Network
	Gaussian Markov Field
	Conclusion

	Exponential Family
	Exponential Families
	Linear Exponential Families

	Factored Exponential Families
	Entropy and Relative Entropy

